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of B, as well as b3 can be taken as the free parameters. That the solution (2.3) is real valued follows from the 
results obtained earlier in [l]. The dependence of cp on time can then be found by inverting an elliptic integral. 

The method of investigation used in this paper indicates that the precession (2.3) is unique under the 
conditions (2.2). For C = 0, B = 0 and A = 0, we obtain a precession of general form in the classical problem of 
the motion of a rigid body corresponding to a solution [2], which, despite the Hess conditions for the 
distribution of the mass of the body, does not occur as a special case in the Hess solution. 
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It is shown that, when the Stokes equations are used, a drop which is falling through a viscous fluid can only 

maintain a strictly spherical shape when there are specific distributions of the surface tension. Deviations 

from these distributions will cause some deformation of the drop. These results are obtained using a more 

general solution of the Stokes equations compared with the solutions which were considered earlier [l]. 

THE MOTION of a spherical drop in a viscous fluid has been studied both theoretically and experimentally. It has 
been pointed out [2] that agreement between the experimental and theoretical results can be attained if account 
is taken of the effect of surfactants and the changes on the surface of a drop associated with them. Moreover, 
the surface tension distribution on the drop may manifest itself in the shape of its surface. 

The deformation of a drop which falls through a viscous fluid has been treated in the Oseen approximation, 
taking into account inertial effects, by the method of matched asymptotic expansions [l, 31. It was concluded 
[l] that deformations of the surface cannot occur and the drop will remain spherical within the framework of 
the inertia-less Stokes equations when the surface tension on the surface of the drop is constant and there is no 
change in the rate of flow around the spherical drop. 

Let us consider the flow around a drop of radius R by another fluid with a velocity U at a large distance from 
the drop. This flow relative to the drop arises as a result of its falling through the fluid under the action of 
gravitational and Archimedean forces. The surface tension u varies along the surface of the drop u(8). There 
are various reasons for this change in the surface tension: the existence of surfactants, a non-uniform 
temperature field, etc. 
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The motion of the fluid inside and outside the drop is denoted by the subscripts i and e, respectively. At low 
Reynolds numbers (Re G l), the steady motion of the internal and external fluid is described in the Stokes 
approximation by the system of equations: 

AV=p-‘VP, V.V=O 
(1) 

where P is a generalized function of the pressure, which includes the external forces (P = P - pgz) and p is the 
viscosity of the fluid. Since the flow around a sphere is axisymmetrical, the problem is solved using a stream 
function IJI which is defined as follows 

1 d9 1 a* u=----, I,=-------.~ 
r* sin 8 ae r sin 8 ar 

(2) 

where u and v are the radial and transverse components of the velocity. The boundary conditions at infinity and 
on the surface of the drop S have the form 

r-r = 3&-c 1/J.+ sin2 8 (3) 

At 
a$ 

$;=t), *&), - = 2 
ar (4) 

I do 
T,--T( = - --- 

N*-Nis2O/R (6) 

Here, r,, N, , ri and Ni are the shear and normal stresses on the surface of the drop, respectively. The general 
solution of the equations for the stream function is represented in the form of infinite series in Gegenbauer 
polynomials [4]: 

OD 

4% = c (AnrntBnr-n+‘+Cnrn+2+D,r-n+3)J~(~) (7) 

nrt 

where 5 = cos6. On satisfying the boundary conditions (4) and (5) and taking account of the boundary 
conditions of the stream functions at infinity (3) and the property of the finiteness of the velocities within the 
drop, we establish that all the coefficients in (7) and (8) for the stream functions are expressed in terms of B2, 
B,, , n > 3, which depend on the gradient of the surface tension by virtue of condition (5) 

RS ( U@i I 
B2=_ __- sin2 t) 

Pe+Pi 2 4 
;d, 

0 

II 

B,=------ 14 (C)$ dtI 

Knowing the external flow around the drop we can determine the force which acts on the drop due to the 
surrounding fluid, which will be in the direction of the flow velocity and will be equal to 

where the first term represents the force obtained by Hadamard and Rybczynski and the second term is 
associated with the existence of a surface-tension gradient. The latter increases the drag since, from (5), 
&r/atI<O. The minus sign in the expression for the force indicates that it acts in the opposite direction to the 
motion of the sphere. The drag force acting on the drop is balanced by a driving force 
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From this condition the velocity U is determined 

2(&-+zli) Jw 1 I do [: = - -+* pin” e 
2y,+3P a 3y, 4&+61.1i aedR 

(13) 
n 

Expression (13) is identical with the expression presented in [S] for the velocity of a drop with an arbitrary 
surface tension distribution depending on the presence of surfactants. 

In earlier investigations associated with the motion of a drop with a constant or variable surface tension (51, a 
condition on the normal stresses acting on the surface of the drop was usually not considered. However, when 
there is a surface tension gradient, it is important that a boundary condition on the normal stresses should be 
satisfied since it provides the possibility of determining the distribution of the surface tension under which the 
drop remains spherical. When the boundary conditions on the shear and normal stresses are jointly taken into 
account, one obtains 

By representing the surface tension u in the form of a series in Legendre polynomials with unknown 
coefficients (Y, 

m 

and taking into account the relationship between Legendre polynomials and Gegenbauer polynomials, we 
obtain 

m 

By comparing (9), (10) and (14) and taking into account (16) and the orthogonality conditions for 
Gegenbauer polynomials, we obtain a system of equations for finding all the o., : 

1 

umm(m+i) AI(t) I Jtn+ I (f;) 
1-p 

dg=O n33 

--f 

the solution of which yields 

(17) 

Consequently, in the general case, the surface tension on the surface of a spherical drop must be expressed 
by the formula 

~==%+a~ cos e (19) 

where o0 is the surface tension on the large circle of the drop (0 = 7~12). Relationship (19) is a necessary 
condition for the drop to preserve its spherical shape in the case of a variable surface tension. 

If the variability of the surface tension is caused by the existence, for example, of a non-uniform temperature 
field u = o(T) which satisfies the Laplace equation Q2T = 0 (for low Peclet numbers) it is possible to find the 
temperature distribution along the surface of the spherical drop. It will have the form [6] 

T(R, O)=T(H, n/2)+h cos8 (20) 

where the coefficient A is proportional to the radius of the drop and the temperature gradient at infinity and 
depends on the ratio of the thermal conductivity of the drop and the medium in which the drop is moving. 

If u depends on the temperature such that it may be assumed that &rfiYF= const, then a(8) = (au/aT) 
Xcos0 + a(d2). Consequently, in the case under consideration, the surface tension has a cosinusoidal 
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distribution over the surface of the drop and the drop retains its spherical form, as follows from the general 
considerations which lead to formula (19). 

It may be noted from Eq. (13) that the terminal setting velocity of the drop as a function of the quantity au/da 
may be changed from the maximum velocity determined by the Hadamard-Rybczynski formula 

(21) 

to the minimum velocity, which is identical with the velocity of a solid sphere 

iJ=2l!*IiHQl,. (22) 

In this case, the surface tension distribution on the surface of the sphere (19) varies from a constant value (~0 
up to the value 

o=an+‘lgh.lFCOS 0 (23) 

Here, we do not consider the case when, for example, owing to certain causes the direction of rotation of the 
vortex which develops within the drop changes into the opposite direction on account of the occurrence of a 
temperature gradient. 

When a fluid drop moves at the velocity of a solid sphere (22) and with the corresponding surface tension 
distribution (23), the external flow of the fluid does not give rise to motion of the fluid within the drop. The 
stream function of the internal motion vanishes. The shear stresses of the external fluid which act on the sphere 
are balanced by the gradient of the surface tension. It can be seen from expression (23) that drops of large radii 
must have an appreciable surface-tension gradient in order that they can move at the velocity of a solid sphere. 
Drops of small radii can fall at such a limiting least terminal settling velocity even when there are exceedingly 
small changes in the surface tension. 

Hence, by specifying the surface tension in the form u = a0 + al Pi (5) with a fixed value of the coefficient cxi 
lying between 0 and ?hkR2, the magnitude of the terminal settling velocity of a spherical drop is thereby fixed 
and it will lie between the Hadamard-Rybczynski velocity and the Stokes velocity. 

The deformations of the drop are determined in the case when the surface tension has a distribution that 
differs from cosinusoidal and is expressed by the following dependence: 

a=ao+(a,+a’)P,(cos ti)+a2P2(cos 8) 

The shape of the drop is described by the equation 
a0 

(24) 

r=R(l+o) (co= &AsC) ). (25) 

The boundary conditions on the surface of a deformed drop (25) have the same form (4)~(6) if, in the more 
general equalities 

u,,=O, uni=O, ufe=vli. pnne-Pnni= (liRr+lIR~) o 

Pnre- Pnrz- .--do/as 

one neglects terms which are proportional to the small quantities w, w’ and w” when writing down the equation 
of the meridional curve for the deformed surface in the form of (25). The use of conditions (4) makes it possible 
to express the coefficients a,, c, and D, , occurring in the stream functions (7) and (8), in terms of B, The 
system of equations, composed of (5) and (6), the conditions for the conservation of the volume of the drop 
under deformation 

n 
4 

J 
4 

-5 nR3+2nR3 w sin O’d0 = - nR3 
3 

(26) 
0 

and the condition for the balance of the forces acting on the drop 

4% -UR-B~R-2+(2B,R-2-UR) PO + -;,, - -_! &)]= - --+R% (27) 

serve to find the unknown coefficients Pm and B,. 
they are sought in the following form: 

Confining ourselves to the coefficients PO - p4, B2 and B3, 

Bz=Bzo+Bzi, bi=pit, i=O, 1, 2, 3, 4 (28) 
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B2a is a known quantity which occurs in the stream function which describes the flow around a spherical drop 
(14). From Eq. (26), pa = 0 and it is found from Eqs (5) and (6), by using the relationship between Gegenbauer 
and Legendre polynomials and equating the coefficients accompanying identical polynomials, that 
l3r = p2 = p4 = 0 while the quantity 83 differs from zero: 

(2% 

+ (2+3ir3 [Ca(90+69p) -Bo(28+8ji)] 

ii = * Ca _ uue B. =g(Qi-Pc)R2 

Ire a0 a0 

where Ca is the capillary number, Bo is the Bond number and B3 is determined from the equation 

Ca(QX%ji)+Bo( -1 + :p) 

2+3ji 
(30) 

The resulting shape of the drop is close to the shape of a so-called spherical cap 

r==R[ i+‘/$s co9 0(5 co82 0 -3)] (31) 

The drop is flattened in its frontal part and prolate in its rear part. Such a shape for falling drops has been 
observed [7, 81. In this paper it has been obtained as a result of the assumption that the surface tension along 
the surface of the drop varies according to the law (24), which is more complex than a cosinusoidal law, and 
when the internal and external flows are described using Stokes equations. 
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